Introduction to Algebraic Geometry

B. Math (Hons) III year

Midterm

Time: 2 hours

Feb 28th 2020

Note: There are eight problems, each worth seven points. Your total score x/56 will be reported as min(2x, 100)%!

Remark: The base field in these problems is \mathbb{C} , and is often referred to as k. The polynomials rings associated with \mathbb{A}^1 , \mathbb{A}^2 , etc. will be written as $\mathbb{C}[x]$ (or k[x]), $\mathbb{C}[x, y]$ (or k[x, y]), etc.

- 1. The Plücker embedding in \mathbb{P}^5 of the Grassmanian G(2, 4) of 2-dimensional subspaces in \mathbb{C}^4 is determined by one equation. Derive that equation.
- 2. Prove that any nondegenerate conic in \mathbb{P}^2 is isomorphic to \mathbb{P}^1 .
- 3. We know that for any two $n \times n$ matrices A and B over k, Tr(AB) = Tr(BA), where Tr denotes the trace. Use a Zariski topology argument to show that, more generally, the product matrices AB and BA have the same characteristic polynomials (from which it follows that both matrices have the same trace!).
- 4. Let X_1 denote the set of $n \times m$ matrices over k of rank 1, considered as a subset of \mathbf{P}^{nm-1} . (Thus, we identify a matrix M of rank 1 with all its nonzero scalar multiples in this representation.) Show that X_1 is a closed subvariety of \mathbf{P}^{nm-1} , isomorphic to a product of suitable projective varieties of smaller dimension.
- 5. Show that in a Noetherian ring, there are only finitely many minimal prime ideals over an ideal I (that is, only finitely many prime ideals P such that $P \supseteq I$ and if Q is a prime ideal such that $P \supseteq Q \supset I$ then P = Q). Use this to show that if S/R is an integral extension of Noetherian rings, then over any prime ideal P of R, there are only finitely many prime ideals Q of S such that $Q \cap R = P$.

- 6. Let f be an irreducible polynomial in k[x, y] of the form $f_n + f_{n-1}$, where f_n and f_{n-1} are nonzero homogenous polynomials of degree nand n-1 respectively (for some positive integer $n \ge 2$). Let C be the zero set of f in \mathbb{A}^2 . Show that C can be parameterized by an open set of \mathbb{A}^1 . Does your parameterization cover all points of C? Prove you assertions, of course.
- 7. Give examples (with proofs) of the following:
 - (a) A morphism $f: X \mapsto Y$ of affine varieties such that f(X) is neither open nor closed in Y but is dense in Y.
 - (b) An isomorphism between projective varieties $X \subseteq \mathbb{P}^m$ and $Y \subseteq \mathbb{P}^n$ such that the corresponding homogenous coordinate rings are not isomorphic.
- 8. Let $C \subseteq \mathbb{A}^2$ consist of points of the form (t^4, t^6, t^9) as t varies over k. Show that C is an irreducible variety in \mathbb{A}^2 . Determine its ideal. Show that C is not isomorphic to \mathbb{A}^1 .